SAT solving - An alternative to brute force bitcoin mining

DAG Technology Analysis and Measurement

The report produced by the fire block chain coins Institute, author: Yuan Yuming, Hu Zhiwei, PDF version please read the original text download
Summary
The Fire Coin Blockchain Application Research Institute conducts research on distributed ledger technology based on directed acyclic graph (DAG) data structure from a technical perspective, and through the specific technical test of typical representative project IOTA, the main research results are obtained:
Report body
1 Introduction
Blockchain is a distributed ledger technology, and distributed ledger technology is not limited to the "blockchain" technology. In the wave of digital economic development, more distributed ledger technology is being explored and applied in order to improve the original technology and meet more practical business application scenarios. Directed Acylic Graph (hereinafter referred to as "DAG") is one of the representatives.
What is DAG technology and the design behind it? What is the actual application effect?We attempted to obtain analytical conclusions through deep analysis of DAG technology and actual test runs of representative project IOTA.
It should also be noted that the results of the indicator data obtained from the test are not and should not be considered as proof or confirmation of the final effect of the IOTA platform or project. Hereby declare.
2. Main conclusions
After research and test analysis, we have the following main conclusions and technical recommendations:
3.DAG Introduction
3.1. Introduction to DAG Principle
DAG (Directed Acyclic Graph) is a data structure that represents a directed graph, and in this graph, it cannot return to this point (no loop) from any vertex, as shown in the figure. Shown as follows:
📷
After the DAG technology-based distributed ledger (hereinafter referred to as DAG) technology has been proposed in recent years, many people think that it is hopeful to replace the blockchain technology in the narrow sense. Because the goal of DAG at design time is to preserve the advantages of the blockchain and to improve the shortcomings of the blockchain.
Different from the traditional linear blockchain structure, the transaction record of the distributed ledger platform represented by IOTA forms a relational structure with a directed acyclic graph, as shown in the following figure.
📷
3.2. DAG characteristics
Due to the different data structure from the previous blockchain, the DAG-based distributed ledger technology has the characteristics of high scalability, high concurrency and is suitable for IoT scenarios.
3.2.1. High scalability, high concurrency
The data synchronization mechanism of traditional linear blockchains (such as Ethereum) is synchronous, which may cause network congestion. The DAG network adopts an asynchronous communication mechanism, allowing concurrent writing. Multiple nodes can simultaneously trade at different tempos without having a clear sequence. Therefore, the data of the network may be inconsistent at the same time, but it will eventually be synchronized.

3.2.2. Applicable to IoT scenarios

In the traditional blockchain network, there are many transactions in each block. The miners are packaged and sent uniformly, involving multiple users. In the DAG network, there is no concept of “block”, the smallest unit of the network. It is a "transaction", each new transaction needs to verify the first two transactions, so the DAG network does not need miners to pass the trust, transfer does not require a fee, which makes DAG technology suitable for small payments.
4. Analysis of technical ideas
Trilemma, or "trilemma", means that in a particular situation, only two of the three advantageous options can be selected or one of the three adverse choices must be chosen. This type of selection dilemma has related cases in various fields such as religion, law, philosophy, economics, and business management.Blockchain is no exception. The impossible triangle in the blockchain is: Scalability, Decentralization, and Security can only choose two of them.
If you analyze DAG technology according to this idea, according to the previous introduction, then DAG has undoubtedly occupied the two aspects of decentralization and scalability. The decentralization and scalability of the DAG can be considered as two-sided, because of the asynchronous accounting features brought about by the DAG data structure, while achieving the high degree of decentralization of the participating network nodes and the scalability of the transaction.
5. There is a problem
Since the characteristics of the data structure bring decentralization and scalability at the same time, it is speculated that the security is a hidden danger according to the theory of impossible triangles. But because DAG is a relatively innovative and special structure, can it be more perfect to achieve security? This is not the case from the actual results.
5.1. Double flower problem
The characteristics of DAG asynchronous communication make it possible for a double-flower attack. For example, an attacker adds two conflicting transactions (double spending) at two different locations on the network, and the transactions are continuously forward-checked in the network until they appear on the verification path of the same transaction, and the network discovers the conflict. At this time, the common ancestor nodes that the two transactions are gathered together can determine which transaction is a double-flower attack.
If the trading path is too short, there will be a problem like "Blowball": when most transactions are "lazy" in extreme cases, only the early trading, the trading network will form a minority. Early transactions are the core central topology. This is not a good thing for DAGs that rely on ever-increasing transactions to increase network reliability.
Therefore, at present, for the double flower problem, it is necessary to comprehensively consider the actual situation for design. Different DAG networks have their own solutions.
5.2. Shadow chain problem
Due to the potential problem of double flowers, when an attacker can build a sufficient number of transactions, it is possible to fork a fraudulent branch (shadow chain) from the real network data, which contains a double flower transaction, and then this The branch is merged into the DAG network, and in this case it is possible for this branch to replace the original transaction data.
6. Introduction to the current improvement plan
At present, the project mainly guarantees safety by sacrificing the native characteristics of some DAGs.
The IOTA project uses the Markov chain Monte Carlo (MCMC) approach to solve this problem. The IOTA introduces the concept of Cumulative Weight for transactions to record the number of times the transaction has been cited in order to indicate the importance of its transaction. The MCMC algorithm selects the existing transactions in the current network as a reference for the newly added transactions by weighting the random weights of the accumulated weights. That is, the more referenced the transaction path, the easier it is to be selected by the algorithm. The walk strategy has also been optimized in version 1.5.0 to control the "width" of the transaction topology to a reasonable range, making the network more secure.
However, at the beginning of the platform startup, due to the limited number of participating nodes and transactions, it is difficult to prevent a malicious organization from sending a large number of malicious transactions through a large number of nodes to cause the entire network to be attacked by the shadow chain. Therefore, an authoritative arbitration institution is needed to determine the validity of the transaction. In IOTA, this node is a Coordinator, which periodically snapshots the current transaction data network (Tangle); the transactions contained in the snapshot are confirmed as valid transactions. But Coordinator doesn't always exist. As the entire network runs and grows, IOTA will cancel the Coordinator at some point in the future.
The Byteball improvement program features its design for the witness and the main chain. Because the structure of DAG brings a lot of transactions with partial order, and to avoid double flowers, it is necessary to establish a full order relationship for these transactions to form a transaction backbone. An earlier transaction on the main chain is considered a valid transaction.Witnesses, who are held by well-known users or institutions, form a main chain by constantly sending transactions to confirm other user transactions.
The above scheme may also bring different changes to the platform based on the DAG structure. Taking IOTA as an example, because of the introduction of Coordinator, the decentralization characteristics are reduced to some extent.
7. Actual operation
7.1. Positive effects
In addition to solving security problems, the above solutions can also solve the smart contract problem to some extent.
Due to the two potential problems caused by the native features of DAG: (1) The transaction duration is uncontrollable. The current mechanism for requesting retransmission requires some complicated timeout mechanism design on the client side, hoping for a simple one-time confirmation mechanism. (2) There is no global sorting mechanism, which results in limited types of operations supported by the system. Therefore, on the distributed ledger platform based on DAG technology, it is difficult to implement Turing's complete intelligent contract system.
In order to ensure that the smart contract can run, an organization is needed to do the above work. The current Coordinator or main chain can achieve similar results.
7.2. Negative effects
As one of the most intuitive indicators, DAG's TPS should theoretically be unlimited. If the maximum TPS of the IOTA platform is compared to the capacity of a factory, then the daily operation of TPS is the daily production of the plant.
For the largest TPS, the April 2017 IOTA stress test showed that the network had transaction processing capabilities of 112 CTPS and 895 TPS. This is the result of a small test network consisting of 250 nodes.
For the daily operation of TPS, from the data that is currently publicly available, the average TPS of the main network in the near future is about 8.2, and the CTPS (the number of confirmed transactions per second) is about 2.7.
📷
The average average TPS of the test network is about 4, and the CTPS is about 3.
📷
Data source discord bot: generic-iota-bot#5760
Is this related to the existence of Coordinator? Actual testing is needed to further demonstrate.
8. Measured analysis
The operational statistics of the open test network are related to many factors.For further analysis, we continue to use the IOTA platform as an example to build a private test environment for technical measurement analysis.
8.1. Test Architecture
The relationship between the components we built this test is shown below.
📷
among them:
8.2. Testing the hardware environment
The server uses Amazon AWS EC2 C5.4xlarge: 16 core 3GHz, Intel Xeon Platinum 8124M CPU, 32GB memory, 10Gbps LAN network between servers, communication delay (ping) is less than 1ms, operating system is Ubuntu 16.04.
8.3. Test scenarios and results analysis

8.3.1. Default PoW Difficulty Value

Although there is no concept such as “miners”, the IOTA node still needs to prove the workload before sending the transaction to avoid sending a large number of transactions to flood the network. The Minimum Weight Magnitude is similar to Bitcoin. The result of PoW should be the number of digits of "9", 9 of which is "000" in the ternary used by IOTA. The IOTA difficulty value can be set before the node is started.
Currently for the production network, the difficulty value of the IOTA is set to 14; the test network is set to 9. Therefore, we first use the test network's default difficulty value of 9 to test, get the following test results.
📷
Since each IOTA's bundle contains multiple transfers, the actual processed TPS will be higher than the send rate. But by executing the script that parses zmq, it can be observed that the current TPS is very low. Another phenomenon is that the number of requests that can be sent successfully per second is also low.
After analysis, the reason is that the test uses VPS, so in PoW, the CPU is mainly used for calculation, so the transaction speed is mainly affected by the transmission speed.

8.3.2. Decrease the PoW difficulty value

Re-test the difficulty value to 1 and get the following results.
📷
As can be seen from the results, TPS will increase after the difficulty is reduced. Therefore, the current TPS of the IOTA project does not reach the bottleneck where the Coordinator is located, but mainly because of the hardware and network of the client itself that sends the transaction. The IOTA community is currently working on the implementation of FPGA-based Curl algorithm and CPU instruction set optimization. Our test results also confirm that we can continue to explore the performance potential of the DAG platform in this way.

8.3.3. Reduce the number of test network nodes

Due to the characteristics of DAG, the actual TPS of the platform and the number of network nodes may also be related. Therefore, when the difficulty value is kept at 1, the number of network nodes is reduced to 10 and the test is repeated to obtain the following results.
📷
As can be seen from the results, as the number of nodes decreases, the actual processing of TPS also decreases, and is lower than the transmission rate. This shows that in a DAG environment, maintaining a sufficient size node will facilitate the processing of the transaction.
9. Reference materials
Https://www.iota.org/
https://en.wikipedia.org/wiki/Trilemma
Https://blog.iota.org/new-tip-selection-algorithm-in-iri-1-5-0-61294c1df6f1
https://en.wikipedia.org/wiki/Markov\_chain\_Monte\_Carlo
Https://byteball.org/
Https://www.iotachina.com/iota.html
Https://www.iotachina.com/iota\_tutorial\_1.html
submitted by i0tal0ver to Iota [link] [comments]

Waltonchain All-in-One - Extended

Welcome!

I would like to warmly welcome everyone to waltonchain
This is an updated, extended community-written post and I will try to update it regularly over time.
Please respect our rules (see sidebar) and feel free to comment, contribute and ask questions.
Don’t forget to subscribe to the subreddit for any news on Waltonchain!
 

Getting Started

What is Waltonchain?

The Waltonchain Foundation is building a cross-industry, cross-data sharing platform by integrating Blockchain with the Internet of Things through self-developed RFID Chips with intellectual property rights.
The in-house developed Waltonchain RFID chips integrate a proprietary, genuine random number generator and an asymmetric encryption logic and hardware signature circuit, all of which are patent-protected.
The combination of self-developed RFID chips and the Waltonchain blockchain will ultimately achieve the interconnection of all things and create a genuine, believable, traceable businessmodel with totally shared data and transparent information.
Waltonchain will unfold a new era of the Value Internet of Things (VIoT).
 
Waltonchain Introduction Video
Launch of Waltonchain
 

The Project

The Waltonchain team has formulated a 4-phase development plan, starting from infrastructure platform establishment to gradually incorporating retail, logistics and product manufacturing, and to finally achieving the full coverage of the business ecosystem.
 
As for the phase 1.0 of the project, the team has developed the clothing system integration scheme based on RFID. The application scenarios at phase 1.0 will establish Golden demonstration template
At phase 2.0, our RFID beacon chip will be massproduced and can be used in clothing, B2C retail and logistics.
At phase 3.0, manufacturers will achieve traceable customization of intelligent packaging.
At the project phase 4.0, with the upgrading and iteration of assets information collection hardware and improvement of blockchain data structure, all assets can be registered in Waltonchain in the future.
 
Original Roadmap Thread

Project-Updates:

Video: WTC-Garment System by Waltonchain & Kaltendin
Video: WTC-Food System by Waltonchain
 

Official Resources

Waltonchain Whitepaper
Waltonchain Official Website
Waltonchain Github
 
Official Official Medium
Official Slack
Official Instagram
Official Facebook
Official Twitter @waltonchain
Official Telegram @waltonchain_en
 
Dedicated community Telegram channel for Waltonchain miners, MN & GMN holders.
@WaltonchainMining
 
 
Chinese Community
本群为沃尔顿链华文官方社群
Chinese Telegram @waltonchain_cn
官方网站 - Waltonchain China - Website
 
Korean Community
공식사이트 - Waltonchain Korea - Website
카카오톡 - Waltonchain Korea - Kakao
트위터 - Waltonchain Korea - Twitter
블로그 - Waltonchain Korea - Naver Blog
인스타그램 - Waltonchain Korea - Instagram
Freyr 공식텔레그램방(한국) - Freyrchain Korea - Telegram
Communities in Progress
Russian Twitter @waltonchain_ru
Russian Website
Japanese Twitter @waltonchain_jp
Japanese Website
Brazilian Twitter @waltonchain_br
 

Waltonchain Wallet

Please note that before the token swap,
DO NOT transfer your ERC20 WTC tokens to the WTC wallet!!
 
Wallet for PC (Github)
Web Wallet - Instruction Manual
Windows Wallet - User Manual
Windows Wallet - Tutorial Video
Wallet for Android
Google Playstore
Github
Android User Manual
Android Wallet - Tutorial Video
 
Wallet for IOS
(pending Apple Store approval)
 
Explorer
Waltonchain Explorer
Waltonchain Blockchain Explorer User Manual
 
Mining
Waltonchain GPU Mining User Manual
Waltonchain Progressive Mining Reward Program
 
Unofficial
Unofficial Guardian Masternode Tracker
waltonchain.tech - Unofficial collection of news and useful resources

The Foundation

>> Waltonchain Organizational Chart <<<--
 
Waltonchain Foundation Ltd. (Singapore) - 沃尔顿链
Waltonchain (HK) Development Co. Ltd. (Head company)
Walton Chain Technology Co. Ltd. (Korea)
Silicon (Shenzhen) Electronic Technology Co. Ltd.
Silicon (Xiamen) Electronic Technology Co.Ltd. (RFID Chip Research)
Silicon (Quanzhou) Electronic Technology Co. Ltd.(IoT Intelligent Switch Chip)
Nanjing Sleewa Information Technology Co. Ltd. (Blockchain)
Quanzhou KEDIHENG Electronic Technology Co. Ltd
Xiamen IOT Technology Co. Ltd.
Xiamen Citylink Technology Co.Ltd.
Xiamen ZhongChuan IOT Industry Research Institute Co.Ltd.
 

The Team

Founder:

Do Sanghyuk (都相爀) – Initiator in Korea
Korean, Vice Chairman of the China - Korea Cultural Exchange Development Committee, Director of the Korea Standard Products Association, Chairman of Seongnam Branch of the Korea Small and Medium Enterprises Committee, Chairman of Korea NC Technology Co., Ltd., Senior Reporter of IT TODAY News, Senior Reporter of NEWS PAPER Economic Department, Director of ET NEWS.
 
Xu Fangcheng (许芳呈) – Initiator in China
Chinese, majored in Business Management, former Director for Supply Chain Management of Septwolves Group Ltd., has rich practical experience in supply chain management and purchasing process management. Currently, he is the Director of Shenzhen Silicon, the Director of Xiamen Silicon and the Board Chairman of Quanzhou Silicon. He is also one of our Angel investors.
 

Senior Experts:

Kim Suk ki (金锡基)
Korean, South Koreas electronics industry leader, Doctor of Engineering (graduated from the University of Minnesota), Professor of Korea University, previously worked at Bell Labs and Honeywell USA, served as vice president of Samsung Electronics, senior expert in integrated circuit design field, IEEE Senior Member, Vice President of the Korea Institute of Electrical Engineers, Chairman of the Korea Semiconductor Industry Association. Has published more than 250 academic papers with more than 60 patents.
 
Zhu Yanping (朱延平)
Taiwanese, China, Doctor of Engineering (graduated from National Cheng Kung University), Chairman of the Taiwan Cloud Services Association, Director of Information Management Department of National Chung Hsing University. Has won the Youth Invention Award by Taiwan Ministry of Education and Taiwan Top Ten Information Talent Award. Has deeply studied blockchain applications over the years and led a block chain technology team to develop systems for health big data and agricultural traceability projects.
 

Chief Experts

Mo Bing (莫冰)
Chinese, Doctor of Engineering (graduated from Harbin Institute of Technology), Research Professor of Korea University, Distinguished Fellow of Sun Yat - sen University, Internet of Things expert, integrated circuit expert, Senior Member of Chinese Society of Micro-Nano Technology, IEEE Member. Has published more than 20 papers and applied for 18 invention patents. Began his research of BitCoin in 2013, one of the earliest users of btc 38.com and Korea korbit. Served as Technical Director of Korea University to cooperate with Samsung Group to complete the project Multi sensor data interaction and fusion based on peer to peer network. Committed to the integration of block chain technology and Internet of Things to create a real commercialized public chain.
 
Wei Songjie (魏松杰)
Chinese, Doctor of Engineering (graduated from the University of Delaware), Associate Professor of Nanjing University of Science and Technology, Core Member and Master Supervisor of Network Space Security Engineering Research Institute, Block Chain Technology expert in the field of computer network protocol and application, network and information security. Has published more than 20 papers and applied for 7 invention patents. Previously worked at Google, Qualcomm, Bloomberg and many other high-tech companies in the United States, served as R D engineer and technical expert; has a wealth of experience in computer system design, product development and project management.
 

Core Members

Shan Liang (单良)
Graduated from KOREATECH (Korea University of Technology and Education) Mechanical Engineering Department, Venture Capital PhD, GM of Waltonchain Technology Co., Ltd. (Korea), Director of Korea Sungkyun Technology Co., Ltd., Chinese Market Manager of the heating component manufacturer NHTECH, a subsidiary of Samsung SDI, economic group leader of the Friendship Association of Chinese Doctoral Students in Korea, one of the earliest users of Korbit, senior digital money player.
 
Chen Zhangrong (陈樟荣)
Chinese, graduated in Business Management, received a BBA degree in Armstrong University in the United States, President of TIANYU INTERNATIONAL GROUP LIMITED, leader of Chinese clothing accessories industry, Chinas well-known business mentor, guest of the CCTV2 Win in China show in 2008. Researcher in the field of thinking training for Practical Business Intelligence e-commerce and MONEYYOU course, expert on success for Profit Model course. Began to contact Bitcoin in 2013 with a strong interest and in-depth study of digital money and decentralized management thinking. Has a wealth of practical experience in the business management, market research, channel construction, business cooperation and business model.
 
Lin Herui (林和瑞)
Chinese, Dean of Xiamen Zhongchuan Internet of Things Industry Research Institute, Chairman of Xiamen Citylink Technology Co., Ltd., Chairman of Xiamen IOT. He successively served as Nokia RD Manager and Product Manager, Microsoft Hardware Department Supply Chain Director. In 2014, started to set up a number of IoT enterprises and laid out the industrial chain of the Internet of Things. The products and services developed under his guidance are very popular. Assisted the government in carrying out industrial and policy research and participated in planning of multiple government projects of smart cities, IoT towns and project reviews.
 
Ma Xingyi (马兴毅)
Chinese, China Scholarship Council (CSC) special student, Doctor of Engineering of Korea University, Research Professor of Fusion Chemical Systems Institute of Korea University, Korea Sungkyun Technology Co., Ltd. CEO, Member of Korea Industry Association, Associate Member of the Royal Society of Chemistry, has published his research results in the worlds top journal Nature Communications and participated in the preparation of a series of teaching materials for Internet of Things engineering titled Introduction to the Internet of Things. His current research direction covers cross-disciplines that combine blockchain technology with intelligent medical technology.
 
Zhao Haiming (赵海明)
Chinese, Doctor of Chemical Conductive Polymer of Sungkyunkwan University, core member of Korea BK21th conductive polymer project, researcher of Korea Gyeonggi Institute of Sensor, researcher of Korea ECO NCTech Co., Ltd., Vice President of the Chinese Chamber of Commerce, Director of Korea Sungkyun Technology Co., Ltd. He has been engaged in transfer of semiconductor, sensor and other technologies in South Korea. He is an early participant of the digital currency market.
 
Liu Cai (刘才)
Chinese, Master of Engineering, has 12 years of experience in design and verification of VLSI and a wealth of practical project experience in RFID chip design process, SOC chip architecture, digital-analog hybrid circuit design, including algorithm design, RTL design, simulation verification, FPGA prototype verification, DC synthesis, backend PR, package testing, etc. Has led a team to complete the development of a variety of navigation and positioning baseband chips and communication baseband chips, finished a series of AES, DES and other encryption module designs, won the first prize of GNSS and LBS Association of China for scientific and technological progress. Finally, he is an expert in the consensus mechanism principle of blockchain and the related asymmetric encryption algorithm.
 
Yang Feng (杨锋)
Chinese, Master of Engineering, worked at ZTE. Artificial intelligence expert, integrated circuit expert. Has 12 years of experience in VLSI research and development, architecture design and verification and 5 years of research experience in artificial intelligence and the genetic algorithm. Has won the Shenzhen Science and Technology Innovation Award. Has done an in-depth research on the principle and realization of the RFID technology, the underlying infrastructure of blockchain, smart contracts and the consensus mechanism algorithm.
 
Guo Jianping (郭建平)
Chinese, Doctor of Engineering (graduated from the Chinese University of Hong Kong), Associate Professor of the Hundred Talents Program of Sun Yat-sen University, academic advisor of masters degree students, IEEE senior member, integrated circuit expert. Has published more than 40 international journal conference papers in the field of IC design and applied for 16 patents in China.
 
Huang Ruimin (黄锐敏)
Chinese, Doctor of Engineering (graduated from the University of Freiburg, Germany), academic advisor of masters degree students, lecturer of the Department of Electronics of Huaqiao University, integrated circuit expert. Mainly explores digital signal processing circuit and system implementation and works on digital signal processing technology long-term research and development.
 
Guo Rongxin (郭荣新)
Chinese, Master of Engineering, Deputy Director of the Communication Technology Research Center of Huaqiao University. Has more than 10 years of experience in design and development of hardware and software for embedded systems, works on the long-term research and development of RFID and blockchain technology in the field of Internet of Things.
 
Dai Minhua (戴闽华)
Chinese, graduated in Business Management, received a BBA degree from Armstrong University, senior financial expert, served as Vice President and CFO of Tanyu International Group Co., Ltd. Has 13 years of financial work experience, has a wealth of experience in developing and implementing enterprise strategy and business plans, as well as achieving business management objectives and development goals.
 
Liu Dongxin (刘东欣)
Chinese, received an MBA from China Europe International Business School, Visiting Scholar of Kellogg School of Management at Northwestern University, strategic management consulting expert, investment and financing expert. His current research interest lies in the impact of the blockchain technology on the financial sector.
 

Angel Investors

Song Guoping (宋国平)
Qiu Jun (邱俊)
Yan Xiaoqian (严小铅)
Lin Jingwei (林敬伟)
He Honglian (何红连)

Advisory Team

Ko Sang Tae (高尚台)
Liu Xiaowei (刘晓为)
Su Yan (苏岩)
Zhang Yan (张岩)
Ma Pingping (马萍萍)
Peng Xiande (彭先德)
Fu Ke (傅克)
Xiao Guangjian (肖光坚)
Li Xiong (李雄)
 
The Team (pt.I)
The Team - The Engineers (pt. II)
The Team - Angel Investors & Advisors (pt. III)
WaltonChain Office Tour
Meet the team #1: Xu Fangcheng
Meet the team #2: South Korean Team
Meet the team #3: Wei Songjie
Meet the team #4: Suk Ki Kim
Meet the team #5: Lin Herui
Meet the team #6: Bing Mok (CEO)
 

Partnerships, Affiliations & Corporate Interests

Government Affiliations
Fujian IoT Industry Association
Air purification and smart monitoring project with Jinhu Provincial Government
"Smart Oceans" blockchain R&D project with Fujian Provincial Government
Building "Blockchain Silicon Valley" with Taiwan Cloud and Fujian Provincial Government
KISA and Korean IoT research centre
Taiwan Cloud Association
Korea University engineering department
Korea Blockchain Enterprise Promotion Association (authorized by South Korean National Assembly)
 
Smart Logistics / Smart Warehouse
Xiangyu Group
Fuyao Glass Industry Group co., Ltd
Kehua
Lipson Plastic
NanKang City Furniture industry
Direct delivery
Fujian Soonbox Logistics Park
Huodull Technology
 
Smart Retail
Guangdong Original Clothing Trading Center
Shenzhen M&A Association of Listed Companies
Septwolves
Fuguiniao
SMEN
TANYU
JoeOne
Lalabobo
Ishijah
Kaltendin
 
Technical Alliance
Alibaba Cloud
China Mobile IoT Alliance
Xiamen Branch of China Telecom Corporation Limited
Zhangzhou Branch of** China Telecom** Corporation Limited
NC Technologies
Shenzhen Card Cube Smart Technology co., Ltd
NIDS Sensor Technology
Sungkyun Technologies
NH Tech
Jiangsu Zhongke Internet of Things Technology Venture Capital Co., Ltd.
Fujian C-TOP Electronics co., Ltd.
 
Finance
Sinolink Securites
Gingko Capital (Investment Arm of Waltonchain) -> Investments
Gingko Investment List on Reddit
 
Blockchain Partner
Mobius
Freyrchain
Loci
Coinlink
SwftCoin
Morganchain
Aston
 
Media Partner
JU&KE Creative Design
Yunnan Yunshanghuaxia Trading co., Ltd.
ArtCrypto
Fanfangxiang Culture & Media co., Ltd.
 
Waltonchain Government Affiliations Infographic
Waltonchain Business Affiliations Infographic
Summary of Some of Waltonchain's Government and Business Partnerships
 
Child Chains
Freyrchain - Freyrchain - The world’s first blockchain-based collectibles data authenticity platform
Fashionchain Fashionchain - Fashionchain restructures the strongly-centralized pyramid structure inherent in the fashion industry ecology into a decentralized structure in which all parties connect point to point directly.
 
Click here for the News, PR & Awards Thread.
Click here for a Timeline of Official - Waltonchain-Medium - Posts.
 
Videos
Waltonchain Annual Meeting Presentation Video
Waltonchain Introduction Video
Waltonchain Visit and Product Demo! (Part 1 of 2) - Boxmining
Waltonchain Interview and Demo (Part 2 of 2) - Boxmining
Waltonchain Coinnest Meetup with Mo Bing
Dr. Mo Bing's First Live Interview with Coinnest CEO
Waltonchain CEO Mo Bing announcing the official launch of Waltonchain Mainnet
List of AMAs
First Reddit AMA - October 1, 2017
Technical AMA - October 9, 2017
Hardware AMA Summary - October 17,2017
Extended Hardware AMA - October 24, 2017
Retail Demo AMA - November 27, 2017
Masternode AMA - December 7, 2017
Slack AMA Live Thread - January 3, 2018
Waltonchain Beta Release AMA Part 1 - January 5, 2018
Waltonchain Beta Release AMA Part 2 - January 15, 2018
Waltonchain February Q&A - February 18, 2018
Waltonchain March AMA Part 1 - March 19, 2018
Waltonchain March AMA Part 2 - March 27, 2018
Progress Reports
Waltonchain Work Progress in Q2 2018
Waltonchain Work Progress in Q1 2018
Waltonchain: New Logo · New IC strategy ·New Journey!
The Summary of Waltonchain in 2017
Waltonchain Project Progress Report (Nov. – Dec. 2017)
Professor Kim Suk Ki Arrived at Xiamen for Project Review and to Provide Guidance
A letter to the waltonchain family
A Letter from Waltonchain Foundation
Waltonchain Alpha Version Internal Testing
Noteworthy Posts
Waltonchain’s Bigger Picture: OBOR
Waltonchain: Ushering an Era of IoT Mass Market Adoption
What is Waltonchain and Why Should We Care?
Waltonchain and the Chinese Government: Cooperation, Collaboration and a Bright Future
Top 5 Cryptocurrencies Set For Success In 2018 - Invest in Blockchain
 
Exchanges
Binance, Coinnest, HitBTC, LATOKEN, OKEx, Kucoin, COSS, Coinlink, Allcoin, Coinrail, Cobinhood, Huobi
 

Frequently Asked Questions

 
 
Walton Knights
u/fent11
u/NetworkTraveler
u/yayowam
u/Crypto_RALLY
u/TheSideQuest
RikkiTikki (slack)
Crypto Buff (telegram)
submitted by istaan69 to waltonchain [link] [comments]

QuarkChain Testnet 2.0 Mining.

QuarkChain Testnet 1.0 was built based on standardized blockchain system requirements, which included network, wallet, browser, and virtual machine functionalities. Other than the fact that the token was a test currency, the environment was completely compatible with the main network. By enhancing the communication efficiency and security of the network, Testnet 2.0 further improves the openness of the network. In addition, Testnet 2.0 will allow community members (other than citizens or residents of the United States) to contribute directly to the network, i.e. running a full node and mining, and receive testnet tokens as rewards.
QuarkChain Testnet 2.0 will support multiple mining algorithms, including two typical algorithms: Ethash and Double SHA256, as well as QuarkChain’s unique algorithm called Qkchash – a customized ASIC-resistant, CPU mining algorithm, exclusively developed by QuarkChain. Mining is available both on the root chain and on shards due to QuarkChain’s two-layered blockchain structure. Miners can flexibly choose to mine on the root chain with higher computing power requirements or on shards based on their own computing power levels. Our Goal By allowing community members to participate in mining on Testnet 2.0, our goal is to enhance QuarkChain’s community consensus, encourage community members to participate in testing and building the QuarkChain network, and gain first-hand experience of QuarkChain’s high flexibility and usability. During this time, we hope that the community can develop a better understanding about our mining algorithms, sharding technologies, and governance structures, etc. Furthermore, this will be a more thorough challenge to QuarkChain’s design before the launch of mainnet! Thus, we sincerely invite you to join the Testnet 2.0 mining event and build QuarkChain’s infrastructure together!
Today, we’re pleased to announce that we are officially providing the CPU mining demo to the public (other than citizens and residents of the United States)! Everyone can participate in our mining event, and earn tQKC, which can be exchanged to real rewards by non-U.S. persons after the launch of our mainnet. Also, we expect to upgrade our testnet over time, and expect to allow GPU mining for Ethash, and ASIC mining for Double SHA256 in the future. In addition, in the near future, a mining pool that is compatible with all mining algorithms of QuarkChain is also expected to be supported.
We hope all the community members can join in with us, and work together to complete this milestone! 2 Introduction to Mining Algorithms 2.1 What is mining? Mining is the process of generating the new blocks, in which the records of current transactions are added to the record of past transactions. Miners use software that contribute their mining power to participate in the maintenance of a blockchain. In return, they obtain a certain amount of QKC per block, which is called coinbase reward. Like many other blockchain technologies, QuarkChain adopts the most widely used Proof of Work (PoW) consensus algorithm to secure the network.
A cryptographically-secure PoW is a costly and time-consuming process which is difficult to solve due to computation-intensity or memory intensity but easy for others to verify. For a block to be valid it must satisfy certain requirements and hash to a value less than the current target threshold. Reverting a block requires recreating all successor blocks and redoing the work they contain, which is costly.
By running a cluster, everyone can become a miner and participate in the mining process. The mining rewards are proportional to the number of blocks mined by each individual.
2.2 Introduction to QuarkChain Algorithms and Mining setup According to QuarkChain’s two-layered blockchain structure and Boson consensus, different shards can apply different consensus and mining algorithms. As part of the Boson consensus, each shard can adjust the difficulty dynamically to increase or decrease the hash power of each shard chain.
In order to fully test QuarkChain testnet 2.0, we adopt three different types of mining algorithms” Ethash, Double SHA256, and Qkchash, which is ASIC resistant and exclusively developed by QuarkChain founder Qi Zhou. These first two hash algorithms correspond to the mining algorithms dominantly conducted on the graphics processing unit (GPU) and application-specific integrated circuits (ASIC), respectively.
I. Ethash Ethash is the PoW mining algorithm for Ethereum. It is the latest version of earlier Dagger-Hashimoto. Ethash is memory intensive, which makes it require large amounts of memory space in the process of mining. The efficiency of mining is basically independent of the CPU, but directly related to memory size and bandwidth. Therefore, by design, building Ethash ASIC is relatively difficult. Currently, the Ethash mining is dominantly conducted on the GPU machines. Read more about Ethash: https://github.com/ethereum/wiki/wiki/Ethash
II. Double SHA256 Double SHA256 is the PoW mining algorithms for Bitcoin. It is computational intensive hash algorithm, which uses two SHA256 iterations for the block header. If the hash result is less than the specific target, the mining is successful. ASIC machine has been developed by Bitmain to find more hashes with less electrical power usage. Read more about Double SHA256: https://en.bitcoin.it/wiki/Block_hashing_algorithm
III. Qkchash Originally, Bitcoin mining was conducted on the CPU of individual computers, with more cores and greater speed resulting in more profitability. After that, the mining process became dominated by GPU machines, then field-programmable gate arrays (FPGA) and finally ASIC, in a race to achieve more hash rates with less electrical power usage. Due to this arms race, it has become increasingly harder for prospective new miners to join. This raises centralization concerns because the manufacturers of the high-performance ASIC are concentrated in a small few.
To solve this, after extensive research and development, QuarkChain founder Dr. Qi Zhou has developed mining algorithm — Qkchash, that is expected to be ASIC-resistant. The idea is motivated by the famous date structure orders-statistic tree. Based on this data structure, Qkchash requires to perform multiple search, insert, and delete operations in the tree, which tries to break the ASIC pipeline and makes the code execution path to be data-dependent and unpredictable besides random memory-access patterns. Thus, the mining efficiency is closely related to the CPU, which ensures the security of Boston consensus and encourges the mining decentralization.
Please refer to Dr. Qi’s paper for more details: https://medium.com/quarkchain-official/order-statistics-based-hash-algorithm-e40f108563c4
2.3 Testnet 2.0 mining configuration Numbers of Shards: 8 Cluster: According to the real-time online mining node The corresponding mining algorithm is Read more about Ethash with Guardian: https://github.com/QuarkChain/pyquarkchain/wiki/Ethash-with-Guardian)
We will provide cluster software and the demo implementation of CPU mining to the public. Miners are able to arbitrarily select one shard or multiple shards to mine according to the mining difficulty and rewards of different shards. GPU / ASIC mining is allowed if the public manages to get it working with the current testnet. With the upgrade of our testnet, we will further provide the corresponding GPU / ASIC software.
QuarkChain’s two-layered blockchain structure, new P2P mode, and Boson consensus algorithm are expected tobe fully tested and verified in the QuarkChain testnet 2.0. 3 Mining Guidance In order to encourage all community members to participate in QuarkChain Testnet 2.0 mining event, we have prepared three mining guidances for community members of different backgrounds.
Today we are releasing the Docker Mining Tutorial first. This tutorial provides a command line configuration guide for developers and a docker image for multiple platforms, including a concise introduction of nodes and mining settings. Follow the instructions here: Quick Start with QuarkChain Mining.
Next we will continue to release: A tutorial for community members who don’t have programming background. In this tutorial, we will teach how to create private QuarkChain nodes using AWS, and how to mine QKC step by step. This tutorial is expected to be released in the next few days. Programs and APIs integrated with GPU / ASIC mining. This is expected to allow existing miners to switch to QKC mining more seamlessly. Frequently Asked Questions: 1. Can I use my laptop or personal computer to mine? Yes, we will provide cluster software and the demo implementation of CPU mining to the public. Miners will be able to arbitrarily select one shard or multiple shards to mine according to the work difficulty and rewards of different shards. 2. What is the minimum requirements for my laptop or personal computer to mine? Please prepare a Linux or MacOs machine with public IP address or port forwarding set up. 3. Can I mine with my GPU or an ASIC machine? For now, we will only be providing the demo implementation of CPU mining as our first step. Interested miners/developers can rewrite the corresponding GPU / ASIC mining program, according to the JSON RPC API we provided. With the upgrade of our testnet, we expect to provide the corresponding GPU / ASIC interface at a later date. 4. What is the difference among the different mining algorithms? Which one should I choose? Double SHA256 is a computational intensive algorithm, but Ethash and Qkchash are memory intensive algorithms, which have certain requirements on the computer’s memory. Since currently we only support CPU mining, the mining efficiency entirely depends on the cores and speed of CPU. 5. For testnet mining, what else should I know? First, the mining process will occupy a computer’s memory. Thus, it is recommended to use an idle computer for mining. In Testnet 2.0 settings, the target block time of root chain is 60 seconds, and the target block time of shard chain is 10 seconds. The mining is a completely random process, which will take some time and consume a certain amount of electricity. 6. What are the risks of testnet mining? Currently our testnet is still under the development stage and may not be 100% stable. Thus, there would be some risks for QuarkChain main chain forks in testnet, software upgrades and system reboots. These may cause your tQKC or block record to be lost despite our best efforts to ensure the stability and security of the testnet.
For more technical questions, welcome to join our developer community on Discard: https://discord.me/quarkchain. 4 Reward Mechanism Testnet 2.0 and all rewards described herein, including mining, are not being offered and will not be available to any citizens or residents of the United States and certain other jurisdictions. All rewards will only be payable following the mainnet launch of QuarkChain. In order to claim or receive any of the following rewards after mainnet launch, you will be required to provide certain identifying documentation and information about yourself. Failure to provide such information or demonstrate compliance with the restrictions herein may result in forfeiture of all rewards, prohibition from participating in future QuarkChain programs, and other sanctions.
NO U.S. PERSONS MAY PARTICIPATE IN TESTNET 2.0 AND QUARKCHAIN WILL STRICTLY ENFORCE THIS VIA OUR KYC PROCEDURES. IF YOU ARE A CITIZEN OR RESIDENT OF THE UNITED STATES, DO NOT PARTICIPATE IN TESTNET 2.0. YOU WILL NOT RECEIVE ANY REWARDS FOR YOUR PARTICIPATION.
4.1 Mining Rewards
  1. Prize Pool A total of 5 million QKC prize pool have been reserved to motivate all miners to participate in the testnet 2.0 mining event. According to the different mining algorithms, the prize pool is allocated as follows:
Total Prize Pool: 5,000,000 QKC Prize Pool for Ethash Algorithm: 2,000,000 QKC Prize Pool for Double SHA256 Algorithm: 1,000,000 QKC Prize Pool for Qkchash Algorithm: 2,000,000 QKC
The number of QKC each miner is eligible to receive upon mainnet launch will be calculated on a pro rata basis for each mining algorithm set forth above, based on the ratio of sharded block mined by each miner to the total number of sharded block mined by all miners employing such mining algorithm in Testnet 2.0.
  1. Early-bird Rewards To encourage more people to participate early, we will provide early bird rewards. Miners who participate in the first month (December 2018, PST) will enjoy double points. This additional point reward will be ended on December 31, 2018, 11:59pm (PST).
4.2 Bonus for Bug Submission: If you find any bugs for QuarkChain testnet, please feel free to create an issue on our Github page: https://github.com/QuarkChain/pyquarkchain/issues, or send us an email to [email protected]. We may provide related rewards based on the importance and difficulty of the bugs.
4.3 Reward Rules: QuarkChain reserves the right to review the qualifications of the participants in this event. If any cheating behaviors were to be found, the participant will be immediately disqualified from any rewards. QuarkChain further reserves the right to update the rules of the event, to stop the event/network, or to restart the event/network in its sole discretion, including the right to interpret any rules, terms or conditions. For the latest information, please visit our official website or follow us on Telegram/Twitter. About QuarkChain QuarkChain is a flexible, scalable, and user-oriented blockchain infrastructure by applying blockchain sharding technology. It is one of the first public chains that successfully implemented state sharding technology for blockchain in the world. QuarkChain aims to deliver 100,000+ on-chain TPS. Currently, 14,000+ peak TPS has already been achieved by an early stage testnet. QuarkChain already has over 50 partners in its ecosystem. With flexibility, scalability, and usability, QuarkChain is enabling EVERYONE to enjoy blockchain technology at ANYTIME and ANYWHERE.
Testnet 2.0 and all rewards described herein are not being and will not be offered in the United States or to any U.S. persons (as defined in Regulation S promulgated under the U.S. Securities Act of 1933, as amended) or any citizens or residents of countries subject to sanctions including the Balkans, Belarus, Burma, Cote D’Ivoire, Cuba, Democratic Republic of Congo, Iran, Iraq, Liberia, North Korea, Sudan, Syria, Zimbabwe, Central African Republic, Crimea, Lebanon, Libya, Somalia, South Suda, Venezuela and Yemen. QuarkChain reserves the right to terminate, suspend or prohibit participation of any user in Testnet 2.0 at any time.
In order to claim or receive any rewards, including mining rewards, you will be required to provide certain identifying documentation and information. Failure to provide such information or demonstrate compliance with the restrictions herein may result in termination of your participation, forfeiture of all rewards, prohibition from participating in future QuarkChain programs, and other actions.
This announcement is provided for informational purposes only and does not guarantee anyone a right to participate in or receive any rewards in connection with Testnet 2.0.
Note: The use of Testnet 2.0 is subject to our terms and conditions available at: https://quarkchain.io/testnet-2-0-terms-and-conditions/
more about qurakchain: Website: https://quarkchain.io/cn/ Facebook: https://www.facebook.com/quarkchainofficial/ Twitter: https://twitter.com/Quark_Chain Telegram: https://t.me/quarkchainio
submitted by Rahadsr to u/Rahadsr [link] [comments]

Bitcoin Mining with FPGAs (EC551 Final Project) FPGA Mining Is Back! Crushes GPU Mining with $20-57 a Day ... Lancelot FPGA Bitcoin Miner Unboxing Bitcoin Mining Complete Guide & Tutorial (EASIEST METHOD ... is mining still profitable, how to air cool FPGA BCU-1525 ??

A completely open source implementation of a Bitcoin Miner for Altera and Xilinx FPGAs. This project hopes to promote the free and open development of FPGA based mining solutions and secure the future of the Bitcoin project as a whole. A binary release is currently available for the Terasic DE2-115 Development Board, and there are compile-able projects for numerous boards. - progranism/Open ... a modular ASIC/FPGA Bitcoin miner Last version: 5.5.0 Windows 32bit - Windows 64bit Arch: pacman -S bfgminer Debian: aptitude install bfgminer Gentoo: emerge bfgminer OpenWrt: opkg repository Ubuntu: apt-get install bfgminer Source code. What is BFGMiner? BFGMiner is a modular ASIC/FPGA miner written in C, featuring dynamic clocking, monitoring, and remote interface capabilities. Where can I ... bitcoin-mining crypto-miner bitcoin-miner fpga-mining cryptocurency-mining litecoin-miner Updated Mar 19, 2020 eastshoremining / Innosilicon From Bitcoin Wiki Jump to: navigation , search A modular ASIC, FPGA, GPU and CPU miner written in C, cross platform for Linux, Mac, and Windows including support for OpenWrt-capable routers. Bitcoin/miner.cpp At Master Bitcoin/bitcoin Github // Skip entries in mapTx that are already in a block or are present // in mapModifiedTx (which implies that the mapTx ancestor state is // stale due to ancestor inclusion in the block) // Also skip transactions that we've already failed to add. This can happen if // we consider a transaction in mapModifiedTx and it fails: we can then ...

[index] [5581] [4234] [10482] [16738] [29613] [42646] [24997] [1363] [27602] [39502]

Bitcoin Mining with FPGAs (EC551 Final Project)

I want to give a shoutout to NotSoFast for tweeting about the FPGA's and also want to mention that my preorder is not like the preorder days of 2014 (i.e. Ti... To download and view our complete article go here: https://www.freelearner.how/2018/08/17/diy-fpga-miner-keccak-fpga-miner/ Atom Miner FPGA Website - https://atomminer.com/ Buy a 100-240V 2amp 24w Max Power Adapter on Amazon! - https://geni.us/tT83Y Join Red Panda Mining's Discord... Lancelot FPGA Bitcoin Miner Unboxing Feel free to donate to keep more Tutorials coming: BTC:1Bv4XhVRZyNfBWuyFbqS8HwYwB3STJXdQA LTC:LWmXeH9Ur2xEbfoS8eiQJSxnra... Using FPGA to mine on Auto Exchange Pools for Bitcoin - Duration: 7:10. Stephen Fitzgerald 188 views. 7:10 . Building the Perfect Squirrel Proof Bird Feeder - Duration: 21:40. Mark Rober ...

#